

T cell dynamics in slow infection

Miles Davenport

Complex Systems in Biology Group Centre for Vascular Research Faculty of Medicine University of New South Wales

m.davenport@unsw.edu.au

How do vaccines work?

The race between infection and immunity.

Davenport, Trends in Immunology 2009.

The race between infection and immunity.

- Infectious agents can grow extremely rapidly (doubling every hour).
- Adaptive immune response divides slowly by comparison (4-6 hours)

The race between infection and immunity.

"Headstart" of vaccination.

Implications of "race" paradigm

• Slowly growing pathogens should be more easily controlled.

 Pathogens that grow more slowly than lymphocytes (doubling time >4-6 hours) should be rapidly overcome.

Davenport, Trends in Immunology 2009.

Implication of "race" paradigm

 Slowly growing pathogens should be more easily controlled.

• Pathogens that grow more slowly than lymphocytes (doubling time >4-6 hours) should be rapidly overcome.

Slow pathogens: - establish chronic infection - are resistant to vaccination.

Slow viral growth in SHIV doubling time of virus = 12 h

Delayed & slow T cell growth

No increase in virus-specific T cell numbers until day 10. T cells double every 18h.

Delayed & slow T cell growth in in tuberculosis.

Wolf et al, JEM 2008

Reiley et al, PNAS 2008

• Delayed T cell activation in TB / BCG.

Delay in other infections

Salmonella typhimurium: Luu et al, J Immunol 2006

LM = Listeria monocytogenes

ST = Salmonella Typhimurium

Compared to fast infections, T cell response in SHIV and TB infection is:

Delayed in starting.

• Slow in growing.

• Fails to eliminate pathogen.

Slow infection = chronic infection

Slow infections.

- TB
- HIV / SIV
- HCV / HBV
- Leishmania
- Toxoplasma

Fast infections.

- Influenza
- Listeria
- Vaccinia

LCMV

Questions

- How does slow pathogen growth affect immune dynamics?
- Is slow pathogen growth a major predictor of chronic infection?
- What vaccination strategies would work for slow growing pathogens?

Slow Pathogens and immune dynamics

- Why is initiation of T cell growth delayed?
- Why is T cell growth slow?
- Does growth affect differentiation?

Slow Pathogens and immune dynamics

- Why is initiation of T cell growth delayed?
- Why is T cell growth slow?
- Does growth affect differentiation?

Hypothesis:

- The delay in initiation of T cell growth is due to a delay in infection reaching a 'threshold' level to drive antigen presentation. (Davenport, JVI 2004)
- Test: compare antigen presentation and viral kinetics in HSV and Flu infection in mice. (Lay *et al*, J Immunol 2009)

Antigen presentation dynamics.

- Use T cell hybridoma to measure antigen presentation.
- Influenza infection in mice (G. Belz).
- HSV infection (F. Carbone, S Mueller).

APC production

Lay et al, J Immunol 2009

APC production

Requirements for antigen presentation:

- 1) Antigen. (viral load)
- 2)Inflammation / DC recruitment / DC activation. (lymph node swelling)

Early presentation in HSV.

Delayed presentation in Flu?

Conclusion:

- Timing of antigen presentation coincides with timing of rapid lymph node cell recruitment.
- Delayed in flu due to delay in viral growth.
- ? Delayed in SHIV because viral growth even slower.
- Related to *inflammation*.

Slow Pathogens and immune dynamics

• Why is initiation of T cell growth delayed?

Why is T cell growth slow?

Does growth affect differentiation?

Slow T cell growth

T cell division and differentiation

Division-linked differentiation

- T cells differentiate with division.
- Number of divisions predicts differentiation status.

Slow division and differentiation

Differentiation in acute infection

Differentiation and CD62L expression

- Adhesion molecule allowing entry into lymph nodes.
- High on naïve cells, down-regulated during acute response.
- Present on 'central memory' cells.
- Recently proposed that division-linked differentiation explains clonotype distribution of CD8 T cells in Influenza.

(Schlub et al, EJI 2009)

Differentiation in acute infection

Harty and Badovinac

Expression of CD62L

Division-linked differentiation in vivo.

• If X% of cells lose CD62L every division, then after N divisions, the number of cells which remain CD62L high will be:

$$(100 - X)^{N}$$

Relative number of divisions

Division predicts CD62L expression

Schlub et al, Immunol Cell Biol 2010

Expression of CD62L over time

Division and CD62L within mice

Conclusions

- For CD62L in LM infection, expression appears division-linked.
- 20% of cells lose CD62L per division.

Questions:

- ?how does slow growth occur?
- Does slow growth affect differentiation?
- Does altered differentiation lead to poor viral control and chronic infection?

Conclusions

- The race between infection and immunity is more complex than we thought.
- Slow growing pathogens elicit delayed T cell responses, slow growing responses, and tend to be chronic.

Acknowledgements

Centre for Vascular Research (UNSW)

Matthew Lay

Vanessa Venturi

Janka Petravic

Hui Yee Chin

Monica Kurniawan

Daniel Chan

Tim Schlub

Mehala Balamurali

Firoz Anwar

Andrew Grimm

Los Alamos National Laboratory (NM)

R Ribeiro

A Perelson

University of Melbourne

K Kedzierska

S Turner

F Carbone

S Mueller

WEHI

G Belz

P Hodgkin.

University of Iowa

J Harty

V. Badovinac

Merck, Philadelphia

John Shiver

- •J.S. McDonnell Foundation 21st Century Research Awards / Studying Complex Systems
- •NHMRC / ARC
- Sylvia and Charles Viertel Senior Medical Research Fellowship

Vaccine failure for chronic Infection: Are we simply running the wrong race?

Miles Davenport

Complex Systems in Biology Group Centre for Vascular Research Faculty of Medicine University of New South Wales

m.davenport@unsw.edu.au